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Diversification is considered a way to lower investment risk by using 

a variety of investment avenues. The objective of this study is to 

compare the portfolio performance based on mean-variance 

optimisation with a naively diversified portfolio for textile spinning 

stocks in the Pakistan country. The data period of study spans from 

January 2015 to April 2022. The result shows that portfolios based 

on naïve diversification strategies outperformed the mean-variance 

portfolio optimisation in terms of risk and return for the textile sector 

in Pakistan. Of all the 9 variance-covariance estimators, the 

portfolio of sample and single index covariance technique is optimal 

for estimating variance-covariance matrices based on low RMSE 

(root mean square error) in Pakistan. This study extends the debate 

on mean-variance portfolio theory and naïve diversification strategy 

from the developed economy to the emerging equity market of 

Pakistan. This research contributes by providing the framework to 

the potential investors regarding their investments in the textile 

sector in Pakistan. 
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Introduction 

Markowitz was the first to propose the concept of mean-variance optimisation 

(1952). Despite the fact that research like Jagannathan and Ma (2003) and Chan, 

Karceski, and Lakonishok (1999) support the use of the standard mean-variance 

paradigm for optimal portfolio management, it has been called into question on several 

fronts. Michaud (1989) refers to the concept as a "enigma," although Disatnik and 

Benninga (2007) argue that it produces dubious results. There are two approaches to 

dealing with the issues that standard mean-variance optimisation presents. The 

theoretical technique focuses on the assumptions and theoretical features of the mean-

variance framework. In contrast, the implementation technique looks into how 

investors might estimate the expected return vector and covariance matrix of asset 
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classes in order to properly apply the framework. 

Beginning in the early 1960s, financial analysts began to assess risk more 

rigorously (Husnain, Hassan, & Lamarque, 2016 a, b). However, there is currently no 

reliable mechanism for measuring risk. Professor Harry Markowitz's (1952) corpus of 

work lays out the core theories underlying portfolio theory. Despite the fact that 

Markowitz's (1952) work is statistical in nature, the notion that drives his asset 

allocation approach may be described using the saying "don't put all your eggs in one 

basket." According to Markowitz, the variance in rate of return is a sufficient measure 

of portfolio risk if certain reasonable assumptions are made. In addition, he creates a 

computational formula. The portfolio risk formula highlights the importance of 

diversification in reducing overall portfolio risk. Many essential assumptions underpin 

Markowitz's (1952) model of investor behaviour. For example, an investor optimises 

one-period expected utility while the utility curve reduces wealth's marginal value. 

Variability in expected returns is a statistic for estimating portfolio risk. Furthermore, 

it is assumed that investors make their decisions only based on the expected return and 

risk of an investment. Investors would prefer higher returns for the same amount of 

risk than lower returns for the same level of risk. Investors, on the other hand, would 

choose lower risk for the same level of return than higher rates of return for the same 

level of risk. According to Markowitz (1952), the expected return of a portfolio is 

defined as the weighted average expected return of all of the portfolio's constituent 

assets. The risk of a portfolio (as measured by standard deviation) is influenced not 

just by the risk of individual assets, but also by the covariance between the returns of 

all pairs contained in that portfolio. The degree to which the return on one asset is 

connected with the return on other assets is seen as the single most important aspect 

by investors. 

Investors may encounter various situations during the asset allocation (Ahmad, 

2020; Umar et al., 2021; Wang, et  al., 2021). An investor can use the mean-variance 

(MV) optimisation principle and minimum variance portfolios (GMVP) throughout 

the asset allocation process. Furthermore, the investor may sometimes invest equally 

in all accessible capital investments resulting in naively diversified portfolios (NDs). 

As a result, investors must make decisions in numerous areas simultaneously, 

determining each class's optimal weight (Ashraf et al, 2020).  

        The main objective of this study is to compare the portfolio risk and return based 

on a naively diversified portfolio with mean-variance portfolio (MVP) optimisation in 

the textile sector in Pakistan and to find the optimal ways to estimate variance-

covariance matrices in Pakistan. Because the minimum variance portfolio is unaffected 

by choice of return vector, we utilise its risk profile to compare different covariance 

matrices. We also compute the risk-return characteristics of the mean-variance 

portfolio, such as the number of positive and negative weights, the maximum and 

minimum weight values, and the excess sharp ratio (ESR) and the Herfindahl index. 

This study extends the debate on mean-variance portfolio theory and naive 

diversification strategy from the developed economy to the emerging equity market of 

Pakistan. This study contributes by guiding the potential investor investing in the 

textile sector in Pakistan. Modern portfolio theory (MPT) also helps decide how 
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investors invest in different stocks or firms (Ahmad, 2020; Umar et al., 2021; Wang, 

et al., 2021).  

        Asset allocation is an important component of the portfolio management process. 

As a result, investors must select a suitable asset class combination. This research 

assists investors in identifying and investigating all accessible investment possibilities 

in Pakistan. This deployment of resources across asset classes eventually leads to 

portfolio diversification for investors. The most important question for investors when 

it comes to diversification is how many stocks make up a diverse portfolio. Investors 

do this by comparing the marginal benefit to the marginal cost and determining the 

optimum asset class mix. Investors can distribute their whole investment 

proportionally or disproportionately to other asset groups. Investors have the choice of 

distributing their whole investment based on naïve diversity or finding a certain 

amount of diversification. The study also provides the best methods for estimating 

inputs for portfolio optimization, such as the estimate of the return vector and the 

variance-covariance matrix, which consistently beat rival methods in Pakistan. It 

assists investors in allocating their funds to various hazardous investment options. 

        In the next section, "Section 2," we will detail the dataset, the study methods, and 

our criteria for comparison. The empirical findings of the study are presented in 

Section 3, which is then followed by a discussion of the results in Section 4, and finally, 

Section 5 brings the work to a close. 
 

Dataset and Research Methodology 

This research offers investors in the textile industry in Pakistan a methodology 

for asset allocation based on their specific needs. The data set is made up of time series 

information that is connected to the various asset classes. In addition, the information 

that pertains to the firms that are listed on the Pakistan stock market (PSX) was 

gathered from the official website of the PSX in Pakistan. The data have been taken 

for the largest 15 listed companies based on the market capitalisation of PSX in the 

textile spinning sector in Pakistan. The data have been taken for 7 years from 1 January 

2015 to 7 April 2022.  

This paper gives investors a detailed method for allocating assets among several    

securities. The equation is used to compute continuously compounding returns for each 

class. 

Rt =  ln (Pt / Pt − 1)……… (1) 

Rt = return of the continuously compounding  

Pt = Price at period "t" 

P(t-1 ) = Price at time period “t-1” 

ln = Log of the given value 

Historical Average estimation 

The following method is used to determine the simple arithmetic mean across 

the investigated period (M) of each asset class to estimate future returns E(Ri), Ri 

represents the asset class's historical return 'i'. 

E(Ri) = 1/M∑ Ri, t. .M
t=1  …… (2) 

Wherever: 
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E (Ri) = Expected/Estimated return  

Ri = Asset class historical return "t" 

M = number of time periods 

Variance-covariance matrix (VCM) 

The asset class expected return and covariance matrices are the two most 

important parameters that investors must provide for the portfolio optimisation process 

that determines the proportion invested in each asset class. According to DeMiguel, 

Garlappi and Uppal (2009), calculating the covariance matrix is essential for portfolio 

covariance optimisation.  

The sample variance-covariance matrix (VCM) may be calculated using the 

following formula. 

VCM = (1/(K − 1))R(I − 1/K 11′)R′ …..  (3) 

The sample variance-covariance matrix has the advantage of being the most 

likely under the normality assumption—the likelihood of overfitting the data increases 

as the sample size diminishes. So, compared to out of sample, its performance for the 

sample is better. The variance may be calculated as follow. 

Mij =  (K − 1)−1∑ [Ri,t − R̅t
K
t=1 ][Rj,t − R̅j],   i, j = 1,2,3, … . , N …… (4) 

Where: 

R̅t = 
1

K
∑ Ri,t    , i = 1,2,3, … , N
k
t=1  ….. (5) 

This study considers the following 9 variance-covariance estimators as an input 

to portfolio optimisation.  

 

Table 1: List of variance-covariance estimators 

Traditional mean-variance framework 

Modern portfolio theory is the result of Markowitz (1952, 1959) demonstration 

of a statistical method for choosing a portfolio. Markowitz assumes that investors are 

risk averse i.e.,  they always desire minimal risk for a given return level. The mean-

variance framework is described in detail as follows. 

Risk and return of the portfolio 

If there are "N" different asset classes, and "Wi" represents the percentage of 

total capital that is allocated to "I" of those asset classes, then the expected return of a 

portfolio can be calculated as follows: 

E(Rp) =  w1E(R)i + w2E(R)2 +⋯+ wNE(R)N = ∑ wi
N
i=1 E(R)i ….. (6) 

where: 

Covariance Estimators Abbrevations  

Diagonal Covariance VC-1  

Sample  Covariance VC-2  

Constant Correlation  Covariance VC-3  

Single Index  Covariance VC-4  

Sample and Diagonal  Covariance VC-5  

Sample and Single Index  Covariance VC-6  

Sample and Constant Correlation  Covariance VC-7  

Sample, Single Index and Constant Correlation  Covariance VC-8  

Sample, Single Index, Constant Correlation and Diagonal     VC-9  
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E (Rp) = Portfolio of Expected Return 

Wi = the weight' i’ 

E (R)i = Asset Class Expected Return ‘i’ 

The portfolio’s expected return can be expressed as follows in matrix notation: 

E(Rp) =  ∑_(i = 1)^N ∗ wi  〖E(R)i =  W^T E(R) …  (7) 

Where: 

W =

(

 
 

w1
w2
w3
⋮
wN)

 
 
 &  E(R) =  

(

 
 

E(R1)
E(R2)
E(R3)
⋮

E(RN))

 
 

 …  (8) 

The weighted average return of the portfolio’s various asset classes is known as 

a portfolio return. However, the logarithm property states that a sum’s logarithm is not 

equal to the sum of its logarithms. As a result, the weighted average of asset class 

returns is almost equivalent to the continuously compounded portfolio return. The 

distribution of returns for the upcoming month is predicated on data from previous 

sample periods. If there are “N” asset classes and “wi” represents the percentage of 

money invested in asset class I, then the portfolio’s variance may be calculated as 

follows: 

Portfolio variance = w1
2σ1

2 + w2
2σ2

2 + 2w1w2Cov1,2 

Var (RP) =  ∑ (Wi 
2N

i=1 ) Var (Ri) + 2∑ ∑ WiWJCov (Ri
N
j=i+1

N
i=1 , Rj)  …. (9) 

Where: 

Var (Rp) = Standard deviation of portfolio while Cov (Ri, Rj) denotes the covariance. 

Also, 

𝑉𝑎𝑟(𝑅𝑝) =  ∑ ∑ 𝑊𝑖
𝑁
𝑗=𝑖+1

 𝑁
𝑖=1 𝑊𝑗𝜎𝑖𝑗 … (10) 

Where: 

Var(Rp) = [𝑊1 𝑊2 𝑊3… .𝑊𝑁] [

𝜎12 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
 𝜎31  𝜎32 𝜎33

…

𝜎1𝑁
𝜎2𝑁
𝜎3𝑁

 ] [

𝑊1
  𝑊2
𝑊 3

]

𝑊𝑁

 …  (11) 

Var (Rp) =   W
T × SW ….  (12) 

WT is the transpose of the weights matrix, S is the variance-covariance matrix, 

and W is the weights matrix. The term "Correlation" refers to the relationship between 

the rates of return on asset classes I and "j" in this calculation. 

Correlation Coffiecient =  ρi,j = 
∑ [Ri,t− E(Ri)][Rj,t− E(Rj)]
N
t=1

√∑ [Ri,t−E(Ri)]
2N

t=1  ∑ [Rj,t− E(Rj)]
2N

t=1

  …. (13) 

The following formula can be used to explain the connection between covariance and 

correlation coefficient. 

Corr =  ρi,j = 
Cov (ri,rj )

σi,σj  
 ….(14) 

 

Evaluation Dimensions 

According to Liu and Lin (2010) and Jagannathan and Ma (2003), we compare 

covariance matrices using two different types of evaluation standards. The first is the 
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root mean square error (RMSE), while the second is the sharp ratio. First, we compute 

the covariance matrices based on the first subsample window, and then we examine 

the pair-wise accuracy of the estimators using the root-mean-squared error. The ex-

post precision of the covariance matrix can be determined using the second subsample 

window. To do so, it is required to evaluate the differences in the covariance estimators 

generated by the two subsample windows. Therefore, this study examines nine 

covariance estimators based on these two standards to align the results with the existing 

literature. To compare the pair wise estimate accuracy of covariance’s, the following 

method is utilised to calculate RMSE in line with Liu and Lin (2010). 

RMSE =  √
N(N−1)

2
∑ ∑ (σ̂ij

N
j=1,   i≠1

N
i=1 − σij)

2…. (15) 

         In the first place, this ratio illustrates the proportion of returns to risk, which can 

be of utmost importance for portfolio investments (Sharp, 1963). It was determined by 

applying the formula that is presented below. 

S Ratio = (Rp − rf) ÷ σp…… . . (16) 

        A lower RMSE is preferable to a greater RMSE. Because MVP is unaffected by 

choice of return vector, we utilise its risk profile to compare different covariance 

matrices. We also compute the risk-return characteristics of the mean-variance 

portfolio, such as the number of positive and negative weights, the maximum and 

minimum weight values, and the excess sharp ratio (ESR). The Herfindahl index is 

also computed in this study (HI). 

The following figures show the conceptual framework of this study. 

 

Figure: 1 Mean-Variance Portfolio Optimization 
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Figure: 2 Naive diversification strategy (NDs) for weight Computation 

 

         Empirical Findings 

This section presents the study’s empirical findings. It includes results on asset 

allocation frameworks in the textile sector in Pakistan.  

Empirical Finding of Textile Spinning Sector 

This study examines 9 covariance matrices based on descriptive statistics from 

the spinning sector, and Table 2 displays the findings. A covariance matrix indicates 

the mean, standard deviation, lowest and maximum value of the entire 15-textile 

spinning sector. It demonstrates that if an investor takes a high risk, they can expect a 

huge return, but they can also expect a significant loss on that increased risk. The 

positive value of the mean (ASGF = 0.0713, SD = 0.3401) shows that investors get a 

good investment return. The negative value means (HTML of mean = -0.0160, SD = 

1.3426) shows that investors lose from that investment. 
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Table 2: Descriptive Statistic Spinning sector 

 Mean SD Minimum Maximum 

ASGF 0.0713 0.3401 -0.9997 1.287 

BFL 0.0524 0.4939 -1.8695 2.9474 

CSML -0.0399 1.0885 -.5884 2.5884 

CTML 0.0289 0.4568 -0.9994 1.9972 

D.SIL 0.0042 0.7275 -2.8876 1.9927 

DSML 0.0031 0.5000 -1.8163 2.8163 

DMTM -0.0035 0.5411 -2.6190 2.2565 

DTM 0.0484 0.7388 -2.7247 2.9176 

GTM 0.0222 0.9281 -2.4558 2.3243 

HTML -0.0160 1.3426 -2.6600 1.6515 

KSML 0.0026 0.9545 -1.4123 2.4122 

NCML -0.0073 0.3126 -2.8436 1.1894 

RTML -0.0122 0.5451 -2.9555 2.8367 

STML 0.0025 0.6073 -1.7393 1.9196 

SSML 0.0003 0.4685 -1.5324 2.3979 

 

Table 3 displays the beta value for Pakistan’s overall 15-textile spinning sector. 

The beta is a term that measures a stock’s predicted to move in relation to moves in 

the textile sector. If the beta value is larger than one, it indicates that the stock is more 

volatile in the textile sector. If the beta value is less than one, the stock in the textile 

spinning industry is less volatile. If the beta value is larger than one, the return on the 

spinning sector is more variable than the market return on the textile sector, and it is 

also an aggressive stock to invest in. If the beta value is less than one, the return on the 

spinning industry is less variable than the market return of the textile sector and it is 

also defensive stock. 

Table 3: Beta of Sample Stocks 

 Beta 

ASGF 0.0025 

BFL 0.0062 

CSML 0.0181 

CTML 0.0028 

D.SIL 0.0084 

DSML 0.0065 

DMTML 0.0003 

DTM 0.0038 

GTML 0.0144 

HTML 0.0308 

KSML 0.0239 

NCML 0.0054 

RTML 0.0100 

STML 0.0008 

SSML 0.0171 
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Empirical Finding of Minimum Variance Portfolio Weight (GMPV) in Spinning 

Sector 

         The result of table 4 shows the weights for minimum variance portfolios in the 

spinning sector of Pakistan. This study compares the 9 covariance matrices based on 

15 textile spinning sectors using the minimal variance portfolio method (GMVP). In 

this study, all 9 covariances are compared with all 15 textile spinning sectors from 

various perspectives. The variance-covariance finding for all 15 textile spinning 

sectors is different from each other. 

 

Table 4: Minimum Variance Portfolio Weight (GMVP) Spinning Sector 

VCM VC-1 VC-2 VC-3 VC-4 VC-5 VC-6 VC-7 VC-8 VC-9 

ASGF 0.0749 0.0696 0.0587 0.0746 0.0725 0.0724 0.0796 0.0908 0.0990 

BFL 0.0205 0.0177 0.0671 0.0205 0.0190 0.0190 0.0748 0.0759 0.0755 

CSML 0.0017 0.0015 0.0687 0.0017 0.0016 0.0016 0.0289 0.0203 0.0162 

CTML 0.0175 0.0250 0.0664 0.0177 0.0211 0.0212 0.0754 0.0768 0.0762 

D.SIL 0.0042 0.0051 0.0626 0.0043 0.0045 0.0046 0.0448 0.0369 0.0321 

DSML 0.0132 0.0034 0.0525 0.0132 0.0084 0.0084 0.0569 0.0565 0.0551 

DMTML 0.0167 0.0151 0.0682 0.0165 0.0158 0.0157 0.0738 0.0729 0.0713 

DTM 0.0083 0.0027 0.0521 0.0083 0.0054 0.0054 0.0481 0.0448 0.0419 

GTML 0.0106 0.0118 0.0703 0.0104 0.0111 0.0111 0.0703 0.0651 0.0606 

HTML 0.0012 0.0009 0.0647 0.0011 0.0010 0.0010 0.0192 0.0134 0.0108 

KSML 0.0054 0.0061 0.0736 0.0054 0.0058 0.0058 0.0605 0.0501 0.0434 

NCML 0.1576 0.1384 0.0561 0.1580 0.1490 0.1491 0.0802 0.0935 0.1039 

RTML 0.6115 0.6426 0.0805 0.6113 0.6262 0.6262 0.1015 0.1143 0.1255 

STML 0.0186 0.0183 0.0819 0.0187 0.0183 0.0184 0.0903 0.0880 0.0849 

SSML 0.0378 0.0414 0.0761 0.0378 0.0396 0.0396 0.0949 0.1003 0.1031 

Sum of 

weight 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Empirical Finding of Efficient Weight Markowitz in Spinning Sector 

         The result of table 5 shows the weights for minimum variance portfolios in the 

spinning sector of Pakistan. This study also compares the 9 covariance matrices based 

on 15 textile spinning sectors using the efficient weight method based on Markowitz 

theory. In this study, all 9 covariances are compared to the entire 15-textile spinning 

sector from various perspectives. The result variance-covariance of all 15 textile 

spinning sectors is different. 

  



NIJBM                                                                                                                                 Vol.17(2), December (2022)            

 

   10 
 

Table 5 Markowitz mean-variance (Efficient weight) Spinning Sector 

VCM VC-1 VC-2 VC-3 VC-4 VC-5 VC-6 VC-7 VC-8 VC-9 

ASGF 0.4892 0.5075 0.3842 0.4898 0.4995 0.4998 0.4331 0.4588 0.4792 

BFL 0.0542 0.0466 0.1417 0.0542 0.0504 0.0504 0.1409 0.1365 0.1323 

CSML 0.0011 -0.009 0.0299 0.0011 0.0001 0.0001 0.0104 0.0067 0.0052 

CTML 0.0569 0.0608 0.1886 0.0575 0.0587 0.0589 0.1841 0.1743 0.1659 

D.SIL 0.0023 0.0025 0.0145 0.0025 0.0021 0.0022 0.0074 0.0078 0.0076 

DSML -0.018 -0.037 -0.125 -0.018 -0.027 -0.027 -0.115 -0.101 -0.091 

DMTML 0.0248 0.0273 0.0876 0.0245 0.0261 0.0259 0.0845 0.0801 0.0763 

DTM 0.0164 0.0142 0.1081 0.0164 0.0151 0.0151 0.0877 0.0750 0.0667 

GTML 0.0140 0.0001 0.0494 0.0138 0.0069 0.0068 0.0405 0.0361 0.0333 

HTML 0.0001 0.0003 0.0038 0.0001 0.0001 0.0001 0.0016 0.0007 0.0005 

KSML -0.002 -0.002 -0.022 -0.002 -0.002 -0.002 -0.015 -0.012 -0.0101 

NCML -0.031 -0.068 -0.041 -0.030 -0.049 -0.049 -0.042 -0.041 -0.0403 

RTML 0.3549 0.4121 0.0610 0.3530 0.3823 0.3814 0.0649 0.0663 0.0681 

STML 0.0339 0.0341 0.1168 0.0342 0.0344 0.0345 0.1141 0.1070 0.1012 

SSML 0.0032 0.0030 0.0026 0.0033 0.0032 0.0033 0.0041 0.0047 0.0051 

Sum 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Empirical finding of characteristics of weight Under Minimum Variance 

Portfolio weight (GMPV) in the Spinning Sector 

 Table 6 shows the results of weight characteristics under minimum variance 

portfolios. It contains portfolio return and risk, excess sharp ratio, the value of the 

Herfindahl index, number of positive and negative weights under 9 alternative 

covariance inputs to positive variance portfolios. The VC-6 clearly outperforms the 

VC-7, since VC-6 has a lower standard deviation with a greater portfolio return.  

 

Table 6: Portfolio Characteristic of GMVP (Spinning Sector) 

  

VCM Portfolio 

Excess 

Return 

Portfolio 

Excess 

SD 

Portfolio 

Excess 

Sharp 

Ratio 

(ESR) 

Herfinda

hl Index 

(HI) 

No of 

Positive 

Weights 

No of  

Negative 

Weights 

VC1 0.0150 0.0604 0.2476 0.4076 15.000 0.0000 

VC2 0.0151 0.0610   -0.1034 0.0404 15.000 0.0000 

VC3 0.0187 0.1959 0.0955 0.6679 15.000 0.0000 

VC4 0.0149 0.0604 0.2472 0.4075 15.000 0.0000 

VC5 0.0150 0.0606 0.2478 0.4229 15.000 0.0000 

VC6 0.0190 0.0601 0.2479 0.7678 15.000 0.0000 

VC7 -0.0213 0.1306 -0.1630 0.0744 15.000 0.0000 

VC8 -0.0222 0.1187 -0.1869 0.0788 15.000 0.0000 

VC9 0.0127 0.1120 0.2027 0.0826 15.000 0.0000 
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   Characteristics of Efficient Weights Markowitz in Spinning Sector 

Table 7 shows the results of the features of efficient weights in Markowitz mean 

variance portfolios. It contains portfolio return and risk, excess sharp ratio, Herfindahl 

index (HI) value, number of positive and negative weights under 9 covariance 

alternative inputs to Positive variance portfolios. The equally weight covariance 

estimator (vc-6) clearly outperforms the covariance estimators (vc-7) since vc-6 has a 

lower standard deviation with a greater portfolio return. The vc-8 has the lowest excess 

sharp ratio. The single index base covariance estimator has a higher excess sharp ratio 

than the constant correlation base covariance estimator. In addition, sample base 

covariance estimators (vc-2) are outperformed by equally weighted covariance 

estimators (vc-6 and vc-7), based on the excess sharp ratio. A further point of interest 

is that the sample covariance (vc-2) has the highest Herfindahl index value. Other 

explored covariance estimators have a much lower short position than sample base 

covariance estimators. 

 

Table 7:Portfolio Characteristic of Efficient Wight by Markowitz (Spinning Sector) 

 

Characteristics of Naïve Diversification in the Spinning Sector 

Table 8 shows the risk and return of naive diversification portfolios with 15 asset 

classes investors. It also displays the Herfindahl index (HI), the excess sharp ratio 

(ESR), the number of positive weights, the number of asset classes with short sales, 

and the range of weights under the naive diversification equally conditions by varying 

the variance-covariance estimators (Ledoit and Wolf (2020, 2021). In Pakistan, the 

constant correlation base covariance matrix and single index basis covariance matrix 

have similar ESR values to other covariance estimators. 

 

 

 

 

 

 

VCM Portfolio 

Excess 

Return 

Portfolio 

Excess SD 

Portfolio 

ESR 

HI No of 

Positive 

Weights 

No of 

Negative 

Weights 

VC1 0.0586 0.1195 0.4899 0.3751 12.0000 3.0000 

VC2 0.0609 0.1253 0.4863 0.7414 11.0000 4.0000 

VC3 0.0654 0.1878 0.3483 0.2616 12.0000 3.0000 

VC4 -0.0586 0.1197 0.4899 0.3744 12.0000 3.0000 

VC5 0.0598 0.1223 0.4890 0.4071 12.0000 3.0000 

VC6 0.0899 0.0224 0.6890 0.0451 12.0000 3.0000 

VC7 0.0686 0.1788 0.3835 0.2907 12.0000 3.0000 

VC8 -0.0694 0.1721 -0.4031 0.3010 12.0000 3.0000 

VC9 0.0700 0.1679 0.4170 0.3112 12.0000 3.0000 
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Table 8: Characteristics of Naïve Diversification 

 

Empirical Evidence of Root Mean Square in Spinning Sector 

The root means square error methodologies support measuring and estimating 

data correction. The standard deviation of the prediction error is the root mean square 

error. Lower RMSE values suggest a better outcome. The diagonal (vc-1) shows that 

(RMSE = 0, Average = 0, SD = 0.2025). 

 

Table 9: Root mean square error (RMSE) Spinning Sector 

 

 

 

 

 

 

 

 

 

 

 

Conclusion and Recommendation 

The process by which an investor allocates their capital among different asset 

classes is called asset allocation. Markowitz (1952) developed an optimal formula for 

asset allocation. This research article is concerned with estimating a covariance matrix 

as an input to asset allocation and using mean-variance criteria for tactical asset 

allocation decisions in Pakistan's equities market. It has two key goals in particular. 

First, it examines 9 various methods for estimating the covariance matrix in Pakistan's 

equities market. It compares covariance matrices using two different sorts of 

evaluation criteria. The first is the root mean square error, and the computation of 

portfolios with the lowest variance. Second, it compares the optimal weights by mean-

variance framework with weights under non-theory base diversification based on the 

VC

M 

Portfolio 

Excess 

Return 

Portfoli

o Excess 

SD 

Portfolio 

ESR 

 HI No of 

Positive 

Weights 

No of 

Negative 

Weights 

VC1  0.0167 0.1283 0.13012 0.0667 15.000 0.000 

VC2  0.0131 0.1496 0.08751 0.0667 15.000 0.000 

VC3  0.0136 0.3237 0.04201 0.0667 15.000 0.000 

VC4  0.0190 0.1295 0.14671 0.0667 15.000 0.000 

VC5    0.0145 0.0656 0.2211 0.0667 15.000 0.000 

VC6 0.2190 0.1399 1.56473 0.0667 15.000 0.000 

VC7 0.0154 0.2522 0.06106 0.0667 15.000 0.000 

VC8 0.0128 0.2191 0.05843 0.0667 15.000 0.000 

VC9 0.0195 0.2003 0.09736 0.0667 15.000 0.000 

 RMSE 

VC-1 1.0011 

VC-2 3.4403 

VC-3 8.9407 

VC-4 0.3839 

VC-5 1.7352 

VC-6 0.0202 

VC-7 5.8838 

VC-8 3.9285 

   VC-9                 2.9464 
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risk-return characteristics of the mean-variance portfolio, number of positive and 

negative weights, excess sharp ratio, and Herfindahl index. 

The result shows that the portfolio risk based on naïve diversification strategies 

are outperformed the mean-variance portfolio (MVP) optimisation in the textile sector 

in Pakistan. The result of the portfolio return based on naïve diversification strategies 

are outperformed the mean-variance portfolio (MVP) optimisation in the textile sector 

in Pakistan. Of all the 9 variance-covariance matrix techniques, the sample and single 

index-based covariance estimation (VC- 6) outperformed, and the VC-6 is optimal for 

estimating variance-covariance matrices based on low RMSE in Pakistan.  

The study recommended that sample and single index-based covariance 

estimation is a good method that outperformed with respect to other variance-

covariance metrics and equal weight techniques that outperformed with respect to 

another mean-variance and minimum variance portfolio based on excess sharp ratio. 

According to the study, investors in emerging nations such as Pakistan should use 

sample and single index models for estimating the variance-covariance matrix as an 

input to portfolio optimisation. It also suggests that an equally weighted portfolio is 

more appropriate than the mean-variance portfolio optimisation in the textile sector in 

Pakistan. The study also suggests that investment managers and academics view naive 

diversification as the first obvious benchmark in contrast to other asset allocation 

techniques. For future researchers, it is suggested that these portfolio estimation 

strategies can be extended to other industries in Pakistan and to different emerging and 

developed economies. Furthermore, this study is limited to only the textile sector of 

Pakistan. Also it only employed the daily data of the listed stocks in textile sector of 

Pakistan. When developing optimum portfolios, further study might consider the 

influence of higher-order moments. We also urge that investors construct stronger 

comparison criteria for the variance-covariance matrix, because the RMSE simply 

takes into account individual changes in each member of the matrix, but a better gauge 

would take into account the matrix's overall structure. Furthermore, in terms of asset 

allocation, the MVP is merely one portfolio on the efficient frontier. This indicates that 

additional criteria are required to assess different covariance estimators in order to 

achieve more satisfying findings. 
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